metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[(1S*,2S*)-trans-1,2-bis(diphenylphosphinoxy)cvclohexane1chloridoruthenium(II) trifluoromethanesulfonate dichloromethane disolvate

George R. Clark,^a* Cornelis Lensink,^b Angela T. Slade^a and L. James Wright^a

^aDepartment of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand, and ^bIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand Correspondence e-mail: g.clark@auckland.ac.nz

Received 9 June 2009; accepted 15 June 2009

Key indicators: single-crystal X-ray study; T = 85 K; mean $\sigma(C-C) = 0.007$ Å; R factor = 0.059; wR factor = 0.136; data-to-parameter ratio = 15.9.

The crystal structure of a racemic mixture of the title $[RuCl(C_{30}H_{30}O_2P_2)_2]CF_3SO_3$. ruthenium(II) complex, 2CH₂Cl₂, reveals that the coordination geometry about the coordinatively unsaturated metal centre is approximately trigonal-pyramidal, with the chlorine atom occupying one of the equatorial positions. The axial Ru-P bonds are longer than the equatorial Ru-P bonds and there is an acute P-Ru-P angle.

Related literature

For the syntheses and properties of chiral asymmetric hydrogenation catalysts, see: Knowles & Noyori (2007); Zhang et al. (2007); Zhang (2004). For the syntheses and properties of chiral diphosphinite complexes, see: Au-Yeung & Chan (2004); Falshaw et al. (2007); Clark et al. (2009). For a decription of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

[RuCl(C30H30O2P2)2]CF3SO3--V = 12605.5 (6) Å³ 2CH₂Cl₂ Z = 8 $M_r = 1424.40$ Mo Ka radiation Orthorhombic, Pbca $\mu = 0.66 \text{ mm}^{-1}$ a = 16.7887 (5) Å T = 85 Kb = 22.9766 (6) Å $0.32 \times 0.18 \times 0.10 \text{ mm}$ c = 32.6782 (9) Å

Data collection

Siemens SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.808, \ T_{\max} = 0.930$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	757 parameters
$wR(F^2) = 0.136$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 1.10 \ {\rm e} \ {\rm \AA}^{-3}$
12041 reflections	$\Delta \rho_{\rm min} = -1.16 \text{ e } \text{\AA}^{-3}$

70582 measured reflections

 $R_{\rm int} = 0.049$

12041 independent reflections

8363 reflections with $I > 2\sigma(I)$

Table 1 Selected geometric parameters (Å, °).

Ru–P2	2.2237 (13)	Ru-P1	2.3935 (12)
Ru–P3	2.2430 (13)	Ru-P4	2.4170 (13)
Ru-Cl1	2.3838 (13)		
P2-Ru-P3	87.81 (5)	Cl1-Ru-P1	84.49 (4)
P2-Ru-Cl1	131.42 (5)	P2-Ru-P4	99.48 (4)
P3-Ru-Cl1	140.73 (5)	P3-Ru-P4	89.39 (4)
P2-Ru-P1	89.44 (4)	Cl1-Ru-P4	83.10 (4)
P3-Ru-P1	99.68 (4)	P1-Ru-P4	167.55 (4)

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-III (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We thank the Tertiary Education Commission, administered by Auckland UniServices Limited, for granting an Enterprise Scholarship to ATS, and Industrial Research Limited New Zealand for partial support of this work. We also thank the University of Auckland for partial support of this work through grants-in-aid.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2843).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Au-Yeung, T. T.-L. & Chan, A. S. C. (2004). Coord. Chem. Rev. 248, 2151-2164.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Clark, G. R., Falshaw, A., Gainsford, G. J., Lensink, C., Slade, A. T. & Wright, L. J. (2009). Polyhedron, Submitted.
- Falshaw, A., Gainsford, G. J., Lensink, C., Slade, A. T. & Wright, L. J. (2007). Polyhedron, 26, 329-337.

Knowles, W. S. & Noyori, R. (2007). Acc. Chem. Res. 40, 1238–1239.

- Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
- Siemens (1995). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zhang, X. (2004). Tetrahedron Asymmetry, 15, 2099–2100.
- Zhang, W., Chi, Y. & Zhang, X. (2007). Acc. Chem. Res. 40, 1278–1290.

Acta Cryst. (2009). E65, m804-m805 [doi:10.1107/S1600536809023034]

Bis[(1*S**,2*S**)*-trans*-1,2-bis(diphenylphosphinoxy)cyclohexane]chloridoruthenium(II) trifluoromethanesulfonate dichloromethane disolvate

G. R. Clark, C. Lensink, A. T. Slade and L. J. Wright

Comment

The development and study of new asymmetric hydrogenation catalysts continues to be a very active area of research (Knowles & Novori, 2007). Reasons for this interest include the commercial importance of producing enantiomerically pure organic materials (especially for the pharmaceutical industry) and the fact that successful catalysts tend to be substrate-specific rather than being generally useful for a wide range of prochiral substrates (Zhang et al., 2007, Zhang, 2004). Many of the successful catalysts that have been developed contain chiral phosphane or phosphinite ligands (Au-Yeung & Chan, 2004). In our recent studies in this area we have synthesized and studied a range of new chiral ruthenium complexes that are potential asymmetric hydrogenation catalysts (Falshaw et al., 2007, Clark et al., 2009). These complexes all contain chiral diphosphinite ligands that have either chiro-inositol or cyclohexane backbones. During these investigations we prepared a racemic mixture of the cationic, chiral ruthenium complexes $[RuCl{(1S,2S)-trans-(OPPh_2)_2(C_6H_{10})}_2]O_3SCF_3$ and $[RuCl{(1R,2R)}]O_3SCF_3$ and $[RuCl{(1R,2R$ -*trans*-(OPPh₂)₂(C_6H_{10})₂]O₃SCF₃ ((*rac*)-3) through treatment of a racemic mixture of the corresponding hydride complexes ((rac)-2) with triflic acid (see Figure 1). (rac)-2, in turn, was prepared by heating a solution of $[RuCl_2(COD)]_n$ with NEt₃ and a racemic mixture of the diphosphinite ligands (1R,2R)-1,2-trans-bis-(O-diphenylphosphino)cyclohexane and (15.25)-1.2-trans-bis-(O-diphenylphosphino)cyclohexane ((rac)-1). We now report the details of the structure of (rac)-3 which crystallizes with four molecules of each enantiomer in the unit cell. The bond lengths and angles for each enantiomer are crystallographically identical and the structure of $[RuCl{(1S,2S)-trans-(OPPh_2)_2(C_6H_{10})}_2]O_3SCF_3$ only is depicted in Figure 2. The geometry about the ruthenium(II) centre in this coordinatively unsaturated complex is approximately trigonal bipyramidal with chloride occupying one of the equatorial positions. It is noteworthy that the isomer of $[RuCl{(1S,2S)}$ $trans-(OPPh_2)_2(C_6H_{10})$ 2]O₃SCF₃ that has the opposite configuration at the metal centre was not present in the crystal. As expected, the two phosphorus atoms in the axial positions (P1 and P4; P1—Ru—P4 = 167.55 (4)°) form slightly longer bonds to ruthenium (Ru—P1 = 2.3935(13), Ru—P4 = 2.4170(13) Å) than the two phosphorus atoms (P2 and P3) that are in the equatorial positions (Ru—P2 = 2.2237 (13), Ru—P3 = 2.2430 (13) Å). However, all Ru—P distances fall within the normal range for compounds of this type [Cambridge Structure Database Version 5.30; Allen (2002); average Ru-P(OR)Ph2 distance = 2.288Å (SD = 0.042Å]. Similarly, the Ru-Cl distance (2.3838 (13) Å) is normal. The P2-Ru-P3 angle is small at 87.81 (5)°. The crystals also contain two dichloromethane molecules of crystallization per molecule of complex.

Experimental

Synthesis of a racemic mixture of chlorobis {(1S,2S)-1,2-trans-bis-(O-diphenylphosphino)cyclohexane}ruthenium(II) trifluoromethanesulfonate and chlorobis {(1R,2R)-1,2-trans-bis-(O-diphenylphosphino)cyclohexane}ruthenium(II) trifluoromethanesulfonate (*rac-3*). Triflic acid (0.049 ml, 0.56 mmol) was added under nitrogen to a racemic mixture of RuHCl{(1S,2S)-trans-(OPPh₂)₂(C₆H₁₀)}₂ and RuHCl{(1R,2R)- trans-(OPPh₂)₂(C₆H₁₀)}₂ (0.21 g, 0.19 mmol) in THF (10 ml) and toluene (1 ml). The solution was stirred for 15 minutes at R.T. and the solvents were removed under reduced pressure to give a red product that was recrystallized from dichloromethane/hexane. MS (m/z): Calcd for C₆₀H₆₀³⁵ ClO₄P₄¹⁰²Ru (M^+) 1105.21741 *m/z*. Found: 1105.21644. ¹H NMR (CDCl₃, δ): 0.74–2.40 (m, 16H, CH₂), 3.70–4.90 (m, 4H, CH), 6.58–7.90 (m, 40H, Ph). ¹³C NMR (CDCl₃, δ): 22.4 (CH₂), 23.3 (CH₂), 31.7 (CH₂), 32.8 (CH₂), 77.9 (CH), 83.1 (CH), 126.0–136.0 (multiple signals, Ph). ³¹P{¹H} NMR (CDCl₃, δ): 126.18 (t, ²J_{PP} = 29.6 Hz), 157.19 (t, ²J_{PP} = 29.6 Hz).

Refinement

Hydrogen atoms were placed in calculated positions and refined using the riding model [C—H 0.93–0.97 Å), with $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$. At the completion of refinement, the second parameter of WGHT (55.0) is quite large, possibly as a consequence of the generally weak nature of the X-ray intensity data.

Figures

Fig. 1. Reaction scheme.

Fig. 2. The molecular structure of the cation $[RuCl\{(1S,2S)-trans-(OPPh_2)_2(C_6H_{10})\}_2]$ O₃SCF₃ of (*rac*)-3 showing 50% probability displacement ellipsoids for non-hydrogen atoms (Burnett & Johnson, 1996). For clarity, only the *ipso* carbon atoms of the phenyl rings are depicted.

$Bis[(1S^*,2S^*)-trans-1,2-bis(diphenylphosphinoxy)cyclohexane] chloridoruthenium(II) trifluoromethanesulfonate dichloromethane disolvate$

Crystal data

$[RuCl(C_{30}H_{30}O_2P_2)_2]CF_3SO_3 \cdot 2CH_2Cl_2$	$F_{000} = 5840$
$M_r = 1424.40$	$D_{\rm x} = 1.501 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbca	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -p 2ac 2ab	Cell parameters from 8192 reflections
a = 16.7887 (5) Å	$\theta = 1.6 - 25.8^{\circ}$
b = 22.9766 (6) Å	$\mu = 0.66 \text{ mm}^{-1}$
c = 32.6782 (9) Å	T = 85 K
V = 12605.5 (6) Å ³	Needle, orange
Z = 8	$0.32 \times 0.18 \times 0.10 \text{ mm}$
Data collection	

12041 independent reflections

Siemens SMART CCD

diffractometer

Monochromator: graphite $R_{int} = 0.049$
$T = 85 \text{ K} \qquad $
Area detector ω scans $\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan $h = 0 \rightarrow 20$ SADABS; Sheldrick, 1996 $h = 0 \rightarrow 20$
$T_{\min} = 0.808, T_{\max} = 0.930$ $k = 0 \rightarrow 28$
70582 measured reflections $l = 0 \rightarrow 39$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H-atom parameters constrained
$wR(F^2) = 0.136$	$w = 1/[\sigma^2(F_o^2) + (0.0418P)^2 + 54.6685P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\text{max}} = 0.001$
12041 reflections	$\Delta \rho_{max} = 1.10 \text{ e } \text{\AA}^{-3}$
757 parameters	$\Delta \rho_{\rm min} = -1.16 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Ru	0.36096 (2)	0.821139 (16)	0.162484 (11)	0.01309 (10)
Cl1	0.34785 (8)	0.81826 (6)	0.23509 (4)	0.0285 (3)
C12	0.78357 (12)	0.81608 (10)	0.12744 (9)	0.0868 (8)
C13	0.94715 (12)	0.78269 (9)	0.14459 (7)	0.0707 (6)
Cl4	0.84460 (11)	0.69420 (9)	0.05105 (5)	0.0596 (5)
C15	0.90640 (12)	0.59698 (9)	0.09840 (8)	0.0778 (7)
S	0.64455 (8)	0.55087 (6)	0.10378 (4)	0.0245 (3)
P1	0.41043 (7)	0.72403 (5)	0.17001 (4)	0.0154 (3)
P2	0.28069 (7)	0.79050 (5)	0.11283 (4)	0.0149 (3)
P3	0.44373 (7)	0.85361 (5)	0.11368 (4)	0.0146 (3)

P4	0.31043 (7)	0.91891 (5)	0.17092 (4)	0.0155 (3)
F1	0.7117 (2)	0.49198 (16)	0.04455 (11)	0.0509 (10)
F2	0.6522 (2)	0.43894 (14)	0.08938 (10)	0.0469 (9)
F3	0.5832 (2)	0.48723 (15)	0.04537 (11)	0.0473 (9)
01	0.39459 (19)	0.67565 (14)	0.13525 (10)	0.0182 (7)
02	0.32316 (18)	0.75725 (13)	0.07524 (10)	0.0169 (7)
03	0.40149 (19)	0.89216 (13)	0.07866 (9)	0.0166 (7)
04	0.3252 (2)	0.96987 (14)	0.13792 (10)	0.0197 (7)
05	0.6393 (2)	0.60028 (15)	0.07688 (10)	0.0266 (8)
O6	0.5733 (2)	0.53826 (18)	0.12712 (11)	0.0346 (10)
07	0.7175 (2)	0.54643 (15)	0.12665 (11)	0.0251 (8)
C1	0.4121 (3)	0.6764 (2)	0.09159 (14)	0.0189 (10)
H1	0.4572	0.7023	0.0858	0.023*
C2	0.4320 (3)	0.6141 (2)	0.07991 (15)	0.0216 (11)
H2A	0.3877	0.5888	0.0869	0.026*
H2B	0.4783	0.6011	0.0951	0.026*
C3	0.4486 (3)	0.6101 (2)	0.03408 (16)	0.0265 (12)
H3A	0.4942	0.6342	0.0274	0.032*
H3B	0.4616	0.5702	0.0270	0.032*
C4	0.3771 (3)	0.6298 (2)	0.00926 (17)	0.0269 (12)
H4A	0.3339	0.6022	0.0129	0.032*
H4B	0.3910	0.6304	-0.0195	0.032*
C5	0.3492 (3)	0.6903 (2)	0.02230 (15)	0.0225 (11)
H5A	0.2988	0.6988	0.0091	0.027*
H5B	0.3877	0.7189	0.0130	0.027*
C6	0.3390 (3)	0.6960 (2)	0.06875 (15)	0.0188 (11)
Н6	0.2930	0.6730	0.0776	0.023*
C11	0.3956 (3)	0.9549 (2)	0.07476 (15)	0.0191 (11)
H11	0.4409	0.9731	0.0887	0.023*
C12	0.4000 (3)	0.9688 (2)	0.02941 (15)	0.0276 (12)
H12A	0.3582	0.9480	0.0150	0.033*
H12B	0.4509	0.9562	0.0186	0.033*
C13	0.3902 (3)	1.0340 (2)	0.02276 (17)	0.0305 (13)
H13A	0.4341	1.0545	0.0355	0.037*
H13B	0.3911	1.0425	-0.0063	0.037*
C14	0.3118 (3)	1.0549 (2)	0.04109 (16)	0.0280 (12)
H14A	0.3071	1.0966	0.0374	0.034*
H14B	0.2678	1.0364	0.0270	0.034*
C15	0.3077 (3)	1.0405 (2)	0.08646 (15)	0.0216 (11)
H15A	0.2564	1.0527	0.0972	0.026*
H15B	0.3487	1.0620	0.1009	0.026*
C16	0.3188 (3)	0.9755 (2)	0.09446 (15)	0.0193 (11)
H16	0.2733	0.9533	0.0841	0.023*
C21	0.5168 (3)	0.7227 (2)	0.18084 (14)	0.0157 (10)
C22	0.5640 (3)	0.6762 (2)	0.16839 (15)	0.0212 (11)
H22	0.5415	0.6455	0.1540	0.025*
C23	0.6445 (3)	0.6759 (2)	0.17755 (16)	0.0244 (11)
H23	0.6760	0.6448	0.1690	0.029*
C24	0.6787 (3)	0.7212 (2)	0.19929 (16)	0.0233 (11)

H24	0.7327	0.7206	0.2055	0.028*
C25	0.6320 (3)	0.7673 (2)	0.21173 (16)	0.0228 (11)
H25	0.6549	0.7979	0.2261	0.027*
C26	0.5511 (3)	0.7682 (2)	0.20297 (15)	0.0200 (11)
H26	0.5198	0.7992	0.2118	0.024*
C31	0.3744 (3)	0.6792 (2)	0.21264 (14)	0.0181 (10)
C32	0.3181 (3)	0.6356 (2)	0.20568 (16)	0.0228 (11)
H32	0.2978	0.6299	0.1795	0.027*
C33	0.2924 (3)	0.6005 (2)	0.23776 (18)	0.0300 (13)
H33	0.2555	0.5712	0.2329	0.036*
C34	0.3217 (3)	0.6093 (2)	0.27698 (18)	0.0317 (14)
H34	0.3032	0.5866	0.2985	0.038*
C35	0.3783 (3)	0.6518 (2)	0.28402 (17)	0.0276 (13)
H35	0.3989	0.6570	0.3102	0.033*
C36	0.4044 (3)	0.6869 (2)	0.25212 (15)	0.0203 (11)
H36	0.4422	0.7156	0.2571	0.024*
C41	0.2037 (3)	0.7407 (2)	0.13072 (15)	0.0179 (10)
C42	0.1524 (3)	0.7164 (2)	0.10137 (16)	0.0216 (11)
H42	0.1591	0.7254	0.0738	0.026*
C43	0.0919 (3)	0.6794 (2)	0.11334 (16)	0.0240 (11)
H43	0.0581	0.6634	0.0938	0.029*
C44	0.0816 (3)	0.6659 (2)	0.15415 (17)	0.0277 (12)
H44	0.0410	0.6406	0.1619	0.033*
C45	0.1309 (3)	0.6896 (2)	0.18354 (17)	0.0241 (11)
H45	0.1233	0.6806	0.2110	0.029*
C46	0.1924 (3)	0.7271 (2)	0.17193 (15)	0.0183 (11)
H46	0.2257	0.7431	0.1917	0.022*
C51	0.2204 (3)	0.8402 (2)	0.08235 (14)	0.0175 (10)
C52	0.2425 (3)	0.8541 (2)	0.04189 (15)	0.0204 (11)
H52	0.2892	0.8389	0.0309	0.024*
C53	0.1951 (3)	0.8901 (2)	0.01849 (16)	0.0279 (13)
Н53	0.2103	0.8992	-0.0081	0.033*
C54	0.1253 (3)	0.9129 (2)	0.03420 (17)	0.0301 (13)
H54	0.0943	0.9379	0.0185	0.036*
C55	0.1021 (3)	0.8983 (2)	0.07345 (17)	0.0284 (13)
H55	0.0549	0.9132	0.0841	0.034*
C56	0.1484 (3)	0.8617 (2)	0.09692 (16)	0.0217 (11)
H56	0.1312	0.8512	0.1230	0.026*
C61	0.5054 (3)	0.80913 (19)	0.07959 (15)	0.0162 (10)
C62	0.5730 (3)	0.7816 (2)	0.09426 (16)	0.0206 (11)
H62	0.5861	0.7846	0.1218	0.025*
C63	0.6215 (3)	0.7497 (2)	0.06817 (17)	0.0248 (12)
Н63	0.6662	0.7307	0.0784	0.030*
C64	0.6033 (3)	0.7460 (2)	0.02706 (17)	0.0294 (13)
H64	0.6355	0.7244	0.0096	0.035*
C65	0.5375 (3)	0.7744 (2)	0.01185 (17)	0.0271 (12)
Н65	0.5260	0.7726	-0.0160	0.033*
C66	0.4880 (3)	0.8058 (2)	0.03791 (15)	0.0219 (11)
H66	0.4433	0.8246	0.0275	0.026*

C71	0.5219 (3)	0.8987 (2)	0.13560 (15)	0.0178 (10)
C72	0.5796 (3)	0.9220 (2)	0.10925 (16)	0.0216 (11)
H72	0.5764	0.9149	0.0813	0.026*
C73	0.6409 (3)	0.9551 (2)	0.12447 (17)	0.0287 (12)
H73	0.6787	0.9708	0.1068	0.034*
C74	0.6463 (3)	0.9652 (2)	0.16619 (17)	0.0290 (12)
H74	0.6884	0.9871	0.1764	0.035*
C75	0.5903 (3)	0.9432 (2)	0.19249 (16)	0.0257 (12)
H75	0.5944	0.9505	0.2204	0.031*
C76	0.5274 (3)	0.9100 (2)	0.17760 (15)	0.0207 (11)
H76	0.4893	0.8953	0.1955	0.025*
C81	0.2040 (3)	0.9219 (2)	0.18108 (15)	0.0196 (11)
C82	0.1647 (3)	0.8756 (2)	0.19968 (15)	0.0222 (11)
H82	0.1933	0.8430	0.2079	0.027*
C83	0.0830 (3)	0.8777 (2)	0.20608 (16)	0.0280 (12)
H83	0.0570	0.8466	0.2185	0.034*
C84	0.0406 (3)	0.9262 (3)	0.19393 (18)	0.0357 (14)
H84	-0.0142	0.9274	0.1978	0.043*
C85	0.0791 (3)	0.9729 (3)	0.17612 (18)	0.0346 (14)
H85	0.0502	1.0057	0.1685	0.041*
C86	0.1607 (3)	0.9710 (2)	0.16954 (17)	0.0280 (12)
H86	0.1864	1.0025	0.1574	0.034*
C91	0.3491 (3)	0.9619 (2)	0.21382 (14)	0.0173 (10)
C92	0.4063 (3)	1.0052 (2)	0.20654 (16)	0.0214 (11)
H92	0.4265	1.0102	0.1803	0.026*
C93	0.4329 (3)	1.0405 (2)	0.23789 (16)	0.0260 (12)
H93	0.4709	1.0690	0.2326	0.031*
C94	0.4036 (3)	1.0337 (2)	0.27663 (16)	0.0248 (12)
H94	0.4215	1.0576	0.2977	0.030*
C95	0.3467 (3)	0.9909 (2)	0.28454 (15)	0.0217 (11)
H95	0.3274	0.9859	0.3110	0.026*
C96	0.3191 (3)	0.9560 (2)	0.25330 (14)	0.0182 (10)
H96	0.2801	0.9283	0.2586	0.022*
C97	0.6475 (4)	0.4893 (3)	0.06932 (17)	0.0368 (14)
C98	0.8707 (5)	0.8330 (3)	0.1544 (2)	0.063 (2)
H98A	0.8592	0.8334	0.1835	0.076*
H98B	0.8885	0.8716	0.1467	0.076*
C99	0.8341 (4)	0.6512 (3)	0.0950 (2)	0.0473 (17)
H99A	0.8376	0.6760	0.1190	0.057*
H99B	0.7818	0.6333	0.0949	0.057*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru	0.01239 (18)	0.01262 (18)	0.01425 (18)	0.00034 (15)	0.00010 (16)	-0.00034 (16)
Cl1	0.0448 (8)	0.0227 (6)	0.0181 (6)	0.0103 (6)	0.0046 (6)	0.0013 (5)
Cl2	0.0485 (12)	0.0664 (14)	0.145 (2)	-0.0060 (10)	0.0052 (13)	0.0341 (15)
C13	0.0603 (12)	0.0550 (12)	0.0967 (16)	0.0017 (10)	-0.0156 (11)	-0.0141 (11)

Cl4	0.0636 (12)	0.0825 (14)	0.0327 (9)	-0.0088 (10)	0.0018 (8)	0.0111 (9)
C15	0.0471 (11)	0.0521 (12)	0.134 (2)	-0.0146 (9)	-0.0125 (12)	0.0166 (13)
S	0.0284 (7)	0.0234 (7)	0.0216 (7)	0.0031 (6)	-0.0011 (6)	0.0010 (5)
P1	0.0153 (6)	0.0139 (6)	0.0170 (6)	0.0013 (5)	0.0003 (5)	-0.0001 (5)
P2	0.0133 (6)	0.0155 (6)	0.0159 (6)	0.0002 (5)	-0.0003 (5)	-0.0014 (5)
P3	0.0129 (6)	0.0147 (6)	0.0162 (6)	-0.0003 (5)	-0.0004 (5)	0.0005 (5)
P4	0.0165 (6)	0.0144 (6)	0.0155 (6)	0.0009 (5)	0.0003 (5)	-0.0008 (5)
F1	0.066 (3)	0.052 (2)	0.035 (2)	0.023 (2)	0.0147 (18)	-0.0037 (18)
F2	0.080 (3)	0.0223 (17)	0.039 (2)	0.0076 (17)	-0.0109 (19)	0.0042 (15)
F3	0.064 (2)	0.035 (2)	0.043 (2)	0.0024 (18)	-0.0238 (19)	-0.0094 (17)
01	0.0193 (17)	0.0143 (17)	0.0209 (18)	-0.0018 (14)	-0.0012 (14)	-0.0015 (15)
O2	0.0187 (17)	0.0162 (17)	0.0156 (17)	0.0006 (14)	0.0030 (13)	-0.0054 (14)
O3	0.0186 (17)	0.0163 (17)	0.0149 (17)	0.0014 (14)	-0.0003 (14)	-0.0008 (14)
O4	0.0288 (19)	0.0152 (17)	0.0152 (17)	0.0007 (15)	0.0001 (14)	-0.0007 (14)
O5	0.036 (2)	0.0234 (19)	0.0202 (18)	0.0046 (17)	0.0038 (17)	0.0055 (15)
O6	0.026 (2)	0.048 (3)	0.030 (2)	0.0046 (18)	0.0058 (17)	0.0086 (19)
07	0.0201 (18)	0.028 (2)	0.027 (2)	0.0027 (15)	0.0000 (15)	-0.0016 (16)
C1	0.016 (2)	0.022 (3)	0.019 (2)	-0.001 (2)	0.002 (2)	-0.002 (2)
C2	0.025 (3)	0.017 (3)	0.022 (3)	0.001 (2)	0.000 (2)	-0.006 (2)
C3	0.026 (3)	0.022 (3)	0.031 (3)	0.002 (2)	0.004 (2)	-0.012 (2)
C4	0.026 (3)	0.026 (3)	0.029 (3)	-0.002 (2)	0.002 (2)	-0.012 (2)
C5	0.018 (3)	0.027 (3)	0.022 (3)	-0.002 (2)	-0.003 (2)	-0.004 (2)
C6	0.019 (2)	0.018 (3)	0.019 (3)	0.0000 (19)	0.004 (2)	-0.004 (2)
C11	0.020 (3)	0.015 (2)	0.022 (3)	0.000 (2)	0.001 (2)	0.005 (2)
C12	0.030 (3)	0.034 (3)	0.019 (3)	0.004 (2)	0.007 (2)	0.008 (2)
C13	0.040 (3)	0.028 (3)	0.023 (3)	-0.001 (3)	0.001 (2)	0.010 (2)
C14	0.034 (3)	0.020 (3)	0.030 (3)	0.002 (2)	-0.007 (2)	0.008 (2)
C15	0.025 (3)	0.016 (3)	0.024 (3)	0.002 (2)	-0.003 (2)	0.006 (2)
C16	0.020 (3)	0.020 (3)	0.018 (3)	-0.002 (2)	-0.001 (2)	0.003 (2)
C21	0.014 (2)	0.017 (2)	0.015 (2)	0.0027 (19)	-0.0020 (19)	0.004 (2)
C22	0.020 (3)	0.018 (2)	0.026 (3)	0.002 (2)	-0.002 (2)	0.001 (2)
C23	0.020 (3)	0.023 (3)	0.030 (3)	0.008 (2)	0.001 (2)	0.003 (2)
C24	0.017 (3)	0.022 (3)	0.031 (3)	0.001 (2)	-0.002 (2)	0.002 (2)
C25	0.024 (3)	0.017 (3)	0.027 (3)	-0.005 (2)	-0.007 (2)	-0.004 (2)
C26	0.022 (3)	0.018 (3)	0.020 (3)	0.005 (2)	-0.004(2)	0.001 (2)
C31	0.018 (3)	0.013 (2)	0.023 (3)	0.005 (2)	0.004 (2)	0.003 (2)
C32	0.022 (3)	0.018 (3)	0.028 (3)	0.001 (2)	0.002 (2)	0.004 (2)
C33	0.031 (3)	0.016 (3)	0.043 (4)	0.000 (2)	0.012 (3)	0.001 (2)
C34	0.033 (3)	0.021 (3)	0.041 (4)	0.009 (2)	0.019 (3)	0.014 (3)
C35	0.028 (3)	0.029 (3)	0.026 (3)	0.015 (2)	0.005 (2)	0.004 (2)
C36	0.019 (3)	0.021 (3)	0.021 (3)	0.003 (2)	0.002 (2)	0.005 (2)
C41	0.013 (2)	0.016 (2)	0.025 (3)	0.0026 (19)	0.000 (2)	0.001 (2)
C42	0.016 (2)	0.022 (3)	0.027 (3)	0.001 (2)	0.000 (2)	-0.002(2)
C43	0.017 (3)	0.022 (3)	0.033 (3)	-0.004 (2)	-0.002 (2)	-0.005 (2)
C44	0.016 (3)	0.025 (3)	0.041 (3)	-0.005 (2)	0.002 (2)	-0.002 (2)
C45	0.022 (3)	0.023 (3)	0.028 (3)	0.002 (2)	0.009 (2)	0.003 (2)
C46	0.017 (2)	0.018 (3)	0.020 (3)	0.001 (2)	0.000 (2)	-0.002 (2)
C51	0.015 (2)	0.018 (2)	0.019 (3)	-0.0018 (19)	-0.007 (2)	-0.001(2)
C52	0.023 (3)	0.018 (3)	0.020 (3)	-0.007(2)	-0.003(2)	0.000 (2)

C53	0.037 (3)	0.025 (3)	0.022 (3)	-0.008 (2)	-0.010 (2)	0.002 (2)
C54	0.034 (3)	0.023 (3)	0.033 (3)	0.003 (2)	-0.019 (3)	0.001 (2)
C55	0.025 (3)	0.024 (3)	0.036 (3)	0.006 (2)	-0.010 (2)	-0.006(3)
C56	0.019 (3)	0.023 (3)	0.023 (3)	0.001 (2)	-0.005 (2)	-0.004 (2)
C61	0.014 (2)	0.012 (2)	0.023 (3)	-0.0037 (19)	0.0052 (19)	0.001 (2)
C62	0.021 (3)	0.018 (3)	0.023 (3)	-0.002 (2)	0.004 (2)	-0.002 (2)
C63	0.016 (3)	0.024 (3)	0.035 (3)	0.003 (2)	0.007 (2)	0.002 (2)
C64	0.026 (3)	0.028 (3)	0.034 (3)	0.002 (2)	0.010 (2)	-0.008 (3)
C65	0.031 (3)	0.025 (3)	0.025 (3)	-0.007 (2)	0.004 (2)	-0.006 (2)
C66	0.018 (3)	0.024 (3)	0.024 (3)	-0.001 (2)	0.002 (2)	-0.003 (2)
C71	0.017 (2)	0.012 (2)	0.024 (3)	0.0013 (19)	-0.003 (2)	0.001 (2)
C72	0.017 (2)	0.024 (3)	0.023 (3)	-0.004 (2)	0.000 (2)	-0.004 (2)
C73	0.021 (3)	0.027 (3)	0.038 (3)	-0.005 (2)	0.004 (2)	0.006 (2)
C74	0.020 (3)	0.027 (3)	0.040 (3)	-0.003 (2)	-0.007 (3)	0.000 (3)
C75	0.025 (3)	0.027 (3)	0.024 (3)	0.000 (2)	-0.007 (2)	-0.005 (2)
C76	0.017 (2)	0.021 (3)	0.025 (3)	0.004 (2)	-0.001 (2)	0.001 (2)
C81	0.016 (2)	0.022 (3)	0.021 (3)	0.003 (2)	0.000 (2)	-0.007 (2)
C82	0.020 (3)	0.025 (3)	0.022 (3)	0.000 (2)	-0.001 (2)	-0.003 (2)
C83	0.028 (3)	0.031 (3)	0.025 (3)	0.000 (2)	0.005 (2)	-0.007 (2)
C84	0.020 (3)	0.047 (4)	0.040 (4)	0.004 (3)	-0.002 (3)	-0.015 (3)
C85	0.030 (3)	0.034 (3)	0.040 (4)	0.016 (3)	-0.005 (3)	-0.005 (3)
C86	0.024 (3)	0.023 (3)	0.037 (3)	0.006 (2)	-0.002 (2)	-0.007 (2)
C91	0.017 (2)	0.015 (2)	0.020 (3)	0.0049 (19)	-0.004 (2)	-0.004 (2)
C92	0.024 (3)	0.017 (3)	0.023 (3)	-0.002 (2)	0.000 (2)	0.000 (2)
C93	0.025 (3)	0.020 (3)	0.033 (3)	-0.001 (2)	-0.005 (2)	-0.005 (2)
C94	0.026 (3)	0.020 (3)	0.028 (3)	0.005 (2)	-0.014 (2)	-0.007 (2)
C95	0.021 (3)	0.028 (3)	0.016 (2)	0.010 (2)	-0.001 (2)	-0.007 (2)
C96	0.019 (3)	0.019 (3)	0.017 (3)	0.004 (2)	-0.003 (2)	-0.003 (2)
C97	0.054 (4)	0.033 (3)	0.024 (3)	0.005 (3)	-0.004 (3)	0.004 (3)
C98	0.086 (6)	0.057 (5)	0.045 (4)	0.020 (4)	0.002 (4)	0.006 (4)
C99	0.052 (4)	0.049 (4)	0.042 (4)	-0.019 (3)	-0.005 (3)	0.008 (3)

Geometric parameters (Å, °)

Ru—P32.2430 (13)C33—C341.387 (8)Ru—Cl12.3838 (13)C33—H330.9300Ru—P12.3935 (12)C34—C351.383 (8)Ru—P42.4170 (13)C34—H340.9300Cl2—C981.751 (8)C35—C361.388 (7)Cl3—C981.757 (7)C35—H350.9300Cl4—C991.753 (6)C36—H360.9300Cl5—C991.743 (7)C41—C461.395 (7)	Ru—P2	2.2237 (13)	С32—Н32	0.9300
Ru—Cl12.3838 (13)C33—H330.9300Ru—P12.3935 (12)C34—C351.383 (8)Ru—P42.4170 (13)C34—H340.9300Cl2—C981.751 (8)C35—C361.388 (7)Cl3—C981.757 (7)C35—H350.9300Cl4—C991.753 (6)C36—H360.9300Cl5—C991.743 (7)C41—C461.395 (7)	Ru—P3	2.2430 (13)	C33—C34	1.387 (8)
Ru—P12.3935 (12)C34—C351.383 (8)Ru—P42.4170 (13)C34—H340.9300Cl2—C981.751 (8)C35—C361.388 (7)Cl3—C981.757 (7)C35—H350.9300Cl4—C991.753 (6)C36—H360.9300Cl5—C991.743 (7)C41—C461.395 (7)	Ru—Cl1	2.3838 (13)	С33—Н33	0.9300
Ru—P42.4170 (13)C34—H340.9300Cl2—C981.751 (8)C35—C361.388 (7)Cl3—C981.757 (7)C35—H350.9300Cl4—C991.753 (6)C36—H360.9300Cl5—C991.743 (7)C41—C461.395 (7)	Ru—P1	2.3935 (12)	C34—C35	1.383 (8)
Cl2—C98 1.751 (8) C35—C36 1.388 (7) Cl3—C98 1.757 (7) C35—H35 0.9300 Cl4—C99 1.753 (6) C36—H36 0.9300 Cl5—C99 1.743 (7) C41—C46 1.395 (7)	Ru—P4	2.4170 (13)	C34—H34	0.9300
Cl3—C981.757 (7)C35—H350.9300Cl4—C991.753 (6)C36—H360.9300Cl5—C991.743 (7)C41—C461.395 (7)	Cl2—C98	1.751 (8)	C35—C36	1.388 (7)
Cl4—C99 1.753 (6) C36—H36 0.9300 Cl5—C99 1.743 (7) C41—C46 1.395 (7)	Cl3—C98	1.757 (7)	С35—Н35	0.9300
CI5-C99 1.743 (7) C41-C46 1.395 (7)	Cl4—C99	1.753 (6)	С36—Н36	0.9300
	Cl5—C99	1.743 (7)	C41—C46	1.395 (7)
S—O5 1.438 (4) C41—C42 1.404 (7)	S—O5	1.438 (4)	C41—C42	1.404 (7)
S—O7 1.439 (4) C42—C43 1.381 (7)	S—07	1.439 (4)	C42—C43	1.381 (7)
S—O6 1.448 (4) C42—H42 0.9300	S—O6	1.448 (4)	C42—H42	0.9300
S—C97 1.809 (6) C43—C44 1.380 (7)	S—C97	1.809 (6)	C43—C44	1.380 (7)
P1—O1 1.611 (3) C43—H43 0.9300	P1—O1	1.611 (3)	C43—H43	0.9300
P1—C21 1.821 (5) C44—C45 1.381 (7)	P1—C21	1.821 (5)	C44—C45	1.381 (7)

P1—C31	1.835 (5)	C44—H44	0.9300
P2—O2	1.613 (3)	C45—C46	1.397 (7)
P2—C51	1.822 (5)	C45—H45	0.9300
P2—C41	1.823 (5)	C46—H46	0.9300
Р3—О3	1.612 (3)	C51—C56	1.389 (7)
P3—C71	1.820 (5)	C51—C52	1.410 (7)
P3—C61	1.832 (5)	C52—C53	1.379 (7)
P4—O4	1.611 (3)	С52—Н52	0.9300
P4—C81	1.819 (5)	C53—C54	1.383 (8)
P4—C91	1.834 (5)	С53—Н53	0.9300
F1—C97	1.350 (7)	C54—C55	1.382 (8)
F2—C97	1.332 (6)	С54—Н54	0.9300
F3—C97	1.333 (7)	C55—C56	1.379 (7)
O1—C1	1.457 (6)	С55—Н55	0.9300
O2—C6	1.447 (6)	С56—Н56	0.9300
O3—C11	1.451 (6)	C61—C62	1.385 (7)
O4—C16	1.430 (6)	C61—C66	1.395 (7)
C1—C6	1.505 (7)	C62—C63	1.389 (7)
C1—C2	1.520 (7)	С62—Н62	0.9300
C1—H1	0.9800	C63—C64	1.380 (8)
C2—C3	1.526 (7)	С63—Н63	0.9300
C2—H2A	0.9700	C64—C65	1.376 (7)
C2—H2B	0.9700	С64—Н64	0.9300
C3—C4	1.519 (7)	C65—C66	1.391 (7)
С3—НЗА	0.9700	С65—Н65	0.9300
С3—Н3В	0.9700	С66—Н66	0.9300
C4—C5	1.528 (7)	C71—C76	1.400 (7)
C4—H4A	0.9700	C71—C72	1.402 (7)
C4—H4B	0.9700	C72—C73	1.373 (7)
C5—C6	1.533 (7)	С72—Н72	0.9300
С5—Н5А	0.9700	C73—C74	1.386 (8)
С5—Н5В	0.9700	С73—Н73	0.9300
С6—Н6	0.9800	C74—C75	1.370 (7)
C11—C16	1.517 (7)	С74—Н74	0.9300
C11—C12	1.518 (7)	C75—C76	1.391 (7)
C11—H11	0.9800	С75—Н75	0.9300
C12—C13	1.523 (7)	С76—Н76	0.9300
C12—H12A	0.9700	C81—C82	1.392 (7)
C12—H12B	0.9700	C81—C86	1.394 (7)
C13—C14	1.523 (8)	C82—C83	1.388 (7)
С13—Н13А	0.9700	С82—Н82	0.9300
С13—Н13В	0.9700	C83—C84	1.380 (8)
C14—C15	1.521 (7)	С83—Н83	0.9300
C14—H14A	0.9700	C84—C85	1.381 (8)
C14—H14B	0.9700	C84—H84	0.9300
C15—C16	1.527 (7)	C85—C86	1.388 (8)
C15—H15A	0.9700	C85—H85	0.9300
C15—H15B	0.9700	C86—H86	0.9300
C16—H16	0.9800	C91—C96	1.392 (7)

C21—C22	1.390 (6)	C91—C92	1.403 (7)
C21—C26	1.396 (7)	C92—C93	1.381 (7)
C22—C23	1.385 (7)	С92—Н92	0.9300
C22—H22	0.9300	С93—С94	1.368 (7)
C23—C24	1.386 (7)	С93—Н93	0.9300
С23—Н23	0.9300	C94—C95	1.395 (7)
C24—C25	1.378 (7)	С94—Н94	0.9300
C24—H24	0.9300	C95—C96	1.379 (7)
C25—C26	1.388 (7)	С95—Н95	0.9300
C25—H25	0.9300	С96—Н96	0.9300
C26—H26	0.9300	C98—H98A	0.9700
C31—C32	1.396 (7)	C98—H98B	0.9700
C31—C36	1.396 (7)	С99—Н99А	0.9700
C32—C33	1.390 (7)	С99—Н99В	0.9700
P2—Ru—P3	87.81 (5)	C31—C32—H32	119.9
P2—Ru—Cl1	131.42 (5)	C34—C33—C32	120.2 (5)
P3—Ru—Cl1	140.73 (5)	С34—С33—Н33	119.9
P2—Ru—P1	89.44 (4)	С32—С33—Н33	119.9
P3—Ru—P1	99.68 (4)	C35—C34—C33	120.0 (5)
Cl1—Ru—P1	84.49 (4)	C35—C34—H34	120.0
P2—Ru—P4	99.48 (4)	С33—С34—Н34	120.0
P3—Ru—P4	89.39 (4)	C34—C35—C36	120.1 (5)
Cl1—Ru—P4	83.10 (4)	С34—С35—Н35	119.9
P1—Ru—P4	167.55 (4)	С36—С35—Н35	119.9
O5—S—O7	115.2 (2)	C35—C36—C31	120.4 (5)
O5—S—O6	115.4 (2)	С35—С36—Н36	119.8
O7—S—O6	114.6 (2)	C31—C36—H36	119.8
O5—S—C97	103.8 (2)	C46—C41—C42	119.2 (4)
O7—S—C97	104.2 (3)	C46—C41—P2	123.1 (4)
O6—S—C97	101.1 (3)	C42—C41—P2	117.7 (4)
O1—P1—C21	106.7 (2)	C43—C42—C41	120.1 (5)
O1—P1—C31	95.4 (2)	C43—C42—H42	119.9
C21—P1—C31	99.6 (2)	C41—C42—H42	119.9
O1—P1—Ru	120.89 (13)	C44—C43—C42	120.3 (5)
C21—P1—Ru	112.07 (16)	C44—C43—H43	119.9
C31—P1—Ru	119.11 (15)	C42—C43—H43	119.9
O2—P2—C51	97.2 (2)	C43—C44—C45	120.5 (5)
O2—P2—C41	105.1 (2)	C43—C44—H44	119.7
C51—P2—C41	100.0 (2)	C45—C44—H44	119.7
O2—P2—Ru	115.97 (13)	C44—C45—C46	119.9 (5)
C51—P2—Ru	122.52 (16)	C44—C45—H45	120.1
C41—P2—Ru	113.23 (17)	C46—C45—H45	120.1
O3—P3—C71	106.5 (2)	C41—C46—C45	120.0 (5)
O3—P3—C61	97.1 (2)	C41—C46—H46	120.0
C71—P3—C61	98.6 (2)	C45—C46—H46	120.0
O3—P3—Ru	114.53 (13)	C56—C51—C52	118.0 (4)
C71—P3—Ru	110.89 (17)	C56—C51—P2	121.3 (4)
C61—P3—Ru	126.64 (15)	C52—C51—P2	120.6 (4)
O4—P4—C81	104.2 (2)	C53—C52—C51	120.3 (5)

O4—P4—C91	93.7 (2)	С53—С52—Н52	119.8
C81—P4—C91	100.8 (2)	С51—С52—Н52	119.8
O4—P4—Ru	123.02 (13)	C52—C53—C54	120.7 (5)
C81—P4—Ru	113.65 (17)	С52—С53—Н53	119.7
C91—P4—Ru	117.66 (15)	С54—С53—Н53	119.7
C1—O1—P1	130.4 (3)	C55—C54—C53	119.5 (5)
C6—O2—P2	130.8 (3)	С55—С54—Н54	120.3
C11—O3—P3	129.7 (3)	С53—С54—Н54	120.3
C16—O4—P4	136.0 (3)	C56—C55—C54	120.3 (5)
O1—C1—C6	108.9 (4)	С56—С55—Н55	119.8
O1—C1—C2	106.1 (4)	С54—С55—Н55	119.8
C6—C1—C2	109.6 (4)	C55—C56—C51	121.2 (5)
O1—C1—H1	110.7	С55—С56—Н56	119.4
С6—С1—Н1	110.7	С51—С56—Н56	119.4
C2—C1—H1	110.7	C62—C61—C66	119.0 (4)
C1—C2—C3	110.1 (4)	C62—C61—P3	120.5 (4)
C1—C2—H2A	109.6	C66—C61—P3	120.4 (4)
С3—С2—Н2А	109.6	C61—C62—C63	120.6 (5)
C1—C2—H2B	109.6	С61—С62—Н62	119.7
C3—C2—H2B	109.6	С63—С62—Н62	119.7
H2A—C2—H2B	108.2	C64—C63—C62	120.0 (5)
C4—C3—C2	111.2 (4)	С64—С63—Н63	120.0
С4—С3—НЗА	109.4	С62—С63—Н63	120.0
С2—С3—НЗА	109.4	C65—C64—C63	120.1 (5)
С4—С3—Н3В	109.4	С65—С64—Н64	120.0
С2—С3—Н3В	109.4	С63—С64—Н64	120.0
НЗА—СЗ—НЗВ	108.0	C64—C65—C66	120.2 (5)
C3—C4—C5	111.4 (4)	С64—С65—Н65	119.9
C3—C4—H4A	109.4	С66—С65—Н65	119.9
С5—С4—Н4А	109.4	C65—C66—C61	120.1 (5)
C3—C4—H4B	109.4	С65—С66—Н66	120.0
C5—C4—H4B	109.4	C61—C66—H66	120.0
H4A—C4—H4B	108.0	C76—C71—C72	119.1 (4)
C4—C5—C6	112.9 (4)	C76—C71—P3	122.6 (4)
С4—С5—Н5А	109.0	C72—C71—P3	118.3 (4)
С6—С5—Н5А	109.0	C73—C72—C71	120.4 (5)
C4—C5—H5B	109.0	С73—С72—Н72	119.8
С6—С5—Н5В	109.0	С71—С72—Н72	119.8
H5A—C5—H5B	107.8	C72—C73—C74	119.8 (5)
O2—C6—C1	111.6 (4)	С72—С73—Н73	120.1
O2—C6—C5	104.4 (4)	С74—С73—Н73	120.1
C1—C6—C5	112.0 (4)	C75—C74—C73	120.7 (5)
O2—C6—H6	109.6	С75—С74—Н74	119.6
C1—C6—H6	109.6	С73—С74—Н74	119.6
С5—С6—Н6	109.6	C74—C75—C76	120.2 (5)
O3—C11—C16	109.3 (4)	C74—C75—H75	119.9
O3—C11—C12	106.9 (4)	С76—С75—Н75	119.9
C16—C11—C12	112.9 (4)	C75—C76—C71	119.7 (5)
O3—C11—H11	109.2	С75—С76—Н76	120.2

C16—C11—H11	109.2	С71—С76—Н76	120.2
C12-C11-H11	109.2	C82—C81—C86	119.3 (5)
C11—C12—C13	109.9 (4)	C82—C81—P4	121.1 (4)
C11—C12—H12A	109.7	C86—C81—P4	119.6 (4)
C13—C12—H12A	109.7	C83—C82—C81	120.5 (5)
C11—C12—H12B	109.7	C83—C82—H82	119.7
C13—C12—H12B	109.7	C81—C82—H82	119.7
H12A—C12—H12B	108.2	C84—C83—C82	119.6 (5)
C14—C13—C12	110.3 (4)	С84—С83—Н83	120.2
C14—C13—H13A	109.6	С82—С83—Н83	120.2
C12-C13-H13A	109.6	C83—C84—C85	120.5 (5)
C14—C13—H13B	109.6	С83—С84—Н84	119.7
С12—С13—Н13В	109.6	C85—C84—H84	119.7
H13A—C13—H13B	108.1	C84—C85—C86	120.2 (5)
C15—C14—C13	110.8 (4)	С84—С85—Н85	119.9
C15—C14—H14A	109.5	С86—С85—Н85	119.9
C13—C14—H14A	109.5	C85—C86—C81	119.9 (5)
C15—C14—H14B	109.5	С85—С86—Н86	120.0
C13—C14—H14B	109.5	С81—С86—Н86	120.0
H14A—C14—H14B	108.1	C96—C91—C92	118.3 (4)
C14—C15—C16	112.0 (4)	C96—C91—P4	121.8 (4)
C14—C15—H15A	109.2	C92—C91—P4	119.7 (4)
С16—С15—Н15А	109.2	C93—C92—C91	120.8 (5)
C14—C15—H15B	109.2	С93—С92—Н92	119.6
C16—C15—H15B	109.2	С91—С92—Н92	119.6
H15A—C15—H15B	107.9	C94—C93—C92	120.1 (5)
04-C16-C11	109.2 (4)	C94—C93—H93	119.9
04	105.5 (4)	C92—C93—H93	119.9
$C_{11} - C_{16} - C_{15}$	109.7 (4)	C93 - C94 - C95	120.0 (5)
04—C16—H16	110.8	C93—C94—H94	120.0
C11_C16_H16	110.8	C95 - C94 - H94	120.0
C15-C16-H16	110.8	C96—C95—C94	120.0 120.2(5)
$C_{22} = C_{21} = C_{26}$	119.5 (4)	C96—C95—H95	119.9
$C_{22} = C_{21} = C_{20}$	119.5(4)	C94—C95—H95	119.9
$C_{22} = C_{21} = 11$	121.0(4)	C94 - C95 - 1195	119.9
$C_{20} = C_{21} = C_{11}$	119.5 (4)	C95_C96_U96	120.5 (5)
$C_{23} = C_{22} = C_{21}$	119.6 (3)	$C_{93} - C_{90} - H_{90}$	119.0
C23-C22-H22	120.1	C91—C90—H90	119.8
C21—C22—H22	120.1	$F_2 = C_9 / - F_3$	107.9 (5)
$C_{22} = C_{23} = C_{24}$	120.7 (5)	$F_2 = C_9 / - F_1$	100.7(5)
C22—C23—H23	119.7	F3	107.2 (5)
C24—C23—H23	119.7	F2—C97—S	112.0 (4)
C25—C24—C23	119.6 (5)	F3—C9/—S	111.8 (4)
C25—C24—H24	120.2	F1—C97—S	111.0 (4)
C23—C24—H24	120.2	C12—C98—C13	111.9 (4)
C24—C25—C26	120.5 (5)	CI2—C98—H98A	109.2
C24—C25—H25	119.7	Cl3—C98—H98A	109.2
C26—C25—H25	119.7	Cl2—C98—H98B	109.2
C25—C26—C21	119.9 (4)	Cl3—C98—H98B	109.2
C25—C26—H26	120.0	H98A—C98—H98B	107.9

C21—C26—H26	120.0	Cl5—C99—Cl4	112.6 (4)
C32—C31—C36	119.0 (4)	Cl5—C99—H99A	109.1
C32—C31—P1	120.2 (4)	Cl4—C99—H99A	109.1
C36—C31—P1	120.8 (4)	Cl5—C99—H99B	109.1
C33—C32—C31	120.2 (5)	Cl4—C99—H99B	109.1
С33—С32—Н32	119.9	Н99А—С99—Н99В	107.8

Fig. 1

